Search results for "Ge-doped silica"

showing 6 items of 6 documents

Evidence of different red emissions in irradiated germanosilicate materials

2016

International audience; This experimental investigation is focused on a radiation induced red emission in Ge doped silica materials, elaborated with different methods and processes. The differently irradiated samples as well as the pristine ones were analyzed with various spectroscopic techniques, such as confocal microscopy luminescence (CML), time resolved luminescence (TRL), photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). Our data prove that irradiation induces a red luminescence related to the presence of the Ge atoms. Such emission features a photoexcitation spectrum in the UV-blue spectral range and, TRL measurements show that its decrease differs from a …

Optical fiberAtomic and Molecular Physics and OpticPhotoluminescenceMaterials scienceGe-doped silicaRadiation effectBiophysicsAnalytical chemistryCondensed Matter Physic02 engineering and technology01 natural sciencesBiochemistrylaw.inventionPoint defectParamagnetismlaw0103 physical sciencesPhotoluminescence excitationIrradiationElectron paramagnetic resonancePhotoluminescence010302 applied physics[PHYS]Physics [physics]Chemistry (all)Settore FIS/01 - Fisica SperimentaleGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsCrystallographic defectAtomic and Molecular Physics and OpticsPhotoexcitation13. Climate action0210 nano-technologyLuminescence
researchProduct

Irradiation induced Germanium Lone Pair Centers in Ge-doped Sol-gel SiO2: luminescence lifetime and temperature dependence

2010

We studied the temperature dependence of the emission profile and of the lifetime, measured at 4.3 eV, related to the germanium lone pair centers (GLPC) induced by gamma ray at 5 MGy in a Ge-doped silica sample and in an analogous sample irradiated at 10 MGy, in which by a successive thermal treatment up to 415 °C the induced GLPC has been modified (named residual GLPC in the following). The measurements were recorded in the temperature range 10-300 K using an excitation of ∼5.2 eV. The data show that the energy level scheme of the induced and the residual GLPC is very similar to that of the native defects generated during the synthesis, and the intersystem crossing process (ISC) of the ind…

Arrhenius equationPhotoluminescenceSettore FIS/01 - Fisica SperimentaleBiophysicsAnalytical chemistrychemistry.chemical_elementGermaniumGeneral ChemistryAtmospheric temperature rangeCondensed Matter PhysicsBiochemistryAtomic and Molecular Physics and OpticsGe-doped silica Luminescenza difetti di puntosymbols.namesakeIntersystem crossingNuclear magnetic resonancechemistrysymbolsIrradiationLuminescenceLone pair
researchProduct

Raman investigation of the drawing effects on Ge-doped fibers

2011

International audience; We have investigated the Raman activity of various germanosilicate fibers and their associated preforms. Our data indicate an enhancement in small rings' (3-member rings) concentration in the silica-based matrix of the fibers during the drawing process. The generation of such rings appears compatible with an increase of the sample density and fictive temperature. The data regarding the drawing effects on the fiber stress appear less clear, and it is possible to suggest that in some cases the drawing could lower the tensile stress. Finally we have also provided evidence that changing the drawing conditions within the usual range of application leads to no significant …

[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceOptical fiberOptical fiberGe-doped silicaDopingCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionStress (mechanics)Matrix (chemical analysis)symbols.namesakelawsilicaRaman spectroscopyMaterials ChemistryCeramics and CompositessymbolsFiberComposite materialRaman spectroscopyRaman
researchProduct

Properties and generation by irradiation of germanium point defects in Ge-doped silica

2012

Ge doped amorphous silicon dioxide (Ge doped silica) has attracted the attention of researchers for more than 50 years. This material is used in many different technological fields from electronics, to telecommunication, to optics. In particular, it is widely used for the production of optical fibers and linear and nonlinear optical devices. The optical fibers, which allow to transmit optical signals with high speed avoiding interferences, are constituted by two regions with different refractive index values: core (inner part) and cladding (external part). To increase the refractive index of the core with respect to that of cladding, Ge doping of silica is commonly used. Moreover, in the Ge…

Ge-doped silica radiation effects point defects optical propertiesSettore FIS/01 - Fisica Sperimentale
researchProduct

Dependence of the emission properties of the germanium lone pair center on Ge doping of silica

2011

We present an experimental investigation regarding the changes induced by the Ge doping level on the emission profile of the germanium lone pair center (GLPC) in Ge doped silica. The investigated samples have been produced by the sol-gel method and by plasma-activated chemical vapor deposition and have doping levels up to 20% by weight. The recorded photoluminescence spectra show that the GLPC emission profile is the same when the Ge content is lower than ∼ 1% by weight, whereas it changes for higher doping levels. We have also performed Raman scattering measurements that show the decrease of the D1 Raman band at 490 cm( - 1) when the Ge content is higher than 1% by weight. The data suggest…

inorganic chemicalsPhotoluminescenceMaterials scienceSettore FIS/01 - Fisica SperimentaleDopingtechnology industry and agricultureAnalytical chemistrychemistry.chemical_elementGermaniumChemical vapor depositionCondensed Matter PhysicsCrystallographic defectSpectral linesymbols.namesakechemistrysymbolsGe-doped silica point defects structural propertiesddc:530General Materials ScienceLone pairRaman scatteringJournal of Physics: Condensed Matter
researchProduct

Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E'Ge defects in Ge-doped silica

2011

Abstract We present an experimental investigation on the Ge doping level dependence of the Electron Paramagnetic Resonance (EPR) signal spectral features of the Ge(1), Ge(2) and E'Ge defects induced in Ge doped silica. We have studied samples produced by sol–gel or PCVD techniques and doped with different amounts of Ge up to 20% by weight. The samples were gamma or beta ray irradiated and successively they were thermally treated to isolate the EPR signals of the different point defects. The data show that the EPR line shapes of the Ge(1) and the Ge(2) centers are progressively modified for doping level higher than 1%, whereas the line shape of the E'Ge defect appears independent from the do…

inorganic chemicalsMaterials scienceAnalytical chemistrychemistry.chemical_elementGermaniumSilica paramagnetic point defects Ge-doped silicasilice drogata difetti di punto risonanza magneticalaw.inventionsymbols.namesakeraman spectroscopylawCondensed Matter::SuperconductivityBeta particleMaterials ChemistryIrradiationElectron paramagnetic resonanceSol-gelSettore FIS/01 - Fisica SperimentaleDopingtechnology industry and agricultureCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialschemistryCeramics and Compositessymbolslipids (amino acids peptides and proteins)Condensed Matter::Strongly Correlated ElectronsRaman spectroscopyhuman activitiesJournal of Non-Crystalline Solids
researchProduct